Latitude gradients in bird colors

0
  • Darwin, CR About the origin of species or the preservation of preferred races in the struggle for life (John Murray, 1859).

  • Wallace, AR Natural Selection and Tropical Nature: Essays on Descriptive and Theoretical Biology 2nd edition (Macmillan, 1895).

  • Darwin, CR A naturalist’s voyage around the world (John Murray, 1913).

  • Wallace, AR Color in Nature. nature 19580-581 (1879).

    Google Scholar

  • Dalrymple, RL et al. Abiotic and biotic predictors of macroecological patterns in bird and butterfly colouration. Ecol. monogr. 88204-224 (2018).

    Google Scholar

  • Adams, JM, Kang, C. & June-Wells, M. Are tropical butterflies more colourful? Ecol. resolution 29685-691 (2014).

    Google Scholar

  • Bailey, SF Latitudinal gradients in color and pattern of passerine birds. condor 80372-381 (1978).

    Google Scholar

  • Wilson, MF & Von Neaumann, RA Why are Neotropical birds more colorful than North American birds? Aviation Mag. 78141-147 (1972).

    Google Scholar

  • Dalrymple, RL et al. Birds, butterflies and flowers in the tropics are no more colorful than at higher latitudes. global Ecol. biogeogr. 241424-1432 (2015).

    Google Scholar

  • Friedman, N.R. & Remeš, V. Ecogeographic gradients in plumage coloration among Australasian songbird clades. global Ecol. biogeogr. 26261-274 (2017).

    Google Scholar

  • Dale, J., Dey, CJ, Delhey, K., Kempenaers, B. & Valcu, M. The effects of life history and sexual selection on male and female plumage coloration. nature 527367-370 (2015).

    CAS Google Scholar

  • Dunn, PO, Armenta, JK & Whittingham, LA Natural and sexual selection act on different axes of variation in birds’ plumage color. Science. adult 1e1400155 (2015).

    PubMed PubMed Headquarters Google Scholar

  • Stoddard, MC & Prum, RO How colorful are birds? Evolution of the color scale of bird plumage. behavior Ecol. 221042-1052 (2011).

    Google Scholar

  • Renoult, JP, Kelber, A. & Schaefer, HM Color spaces in ecology and evolutionary biology. biol. rev 92292-315 (2017).

    Google Scholar

  • Stoddard, MC & Prum, RO Evolution of bird plumage color in a tetrahedral color space: a phylogenetic analysis of New World buntings. Am. nat. 171755-776 (2008).

    Google Scholar

  • Delhey, K. The color of an avian world: a quantitative analysis of the color of Australian birds. Science. representative 518514 (2015).

    CAS PubMed PubMed CentralGoogle Scholar

  • Olson, DM et al. Terrestrial ecoregions of the world: a new map of life on Earth. life sciences 51933-938 (2001).

    Google Scholar

  • Rabosky, DL et al. An inverse latitudinal gradient in the speciation rate for marine fish. nature 559392-395 (2018).

    CAS Google Scholar

  • Lynch, M. Methods for analyzing comparative data in evolutionary biology. evolution 451065-1080 (1991).

    PubMed PubMed Headquarters Google Scholar

  • Delhey, K. A Review of Gloger’s Rule, an Ecogeographical Color Rule: Definitions, Interpretations, and Evidence. biol. Rev. Camb. Phil. Soc. 941294-1316 (2019).

    Google Scholar

  • Marchetti, K. Dark Habitats and Light Birds Illustrate the Role of the Environment in Species Diversity. nature 362149-152 (1993).

    Google Scholar

  • Endler, JA The color of light in forests and its effects. Ecol. monogr. 631-27 (1993).

    Google Scholar

  • Schemske, DW in Speciation and diversity patterns Vol. 12 (eds. Butlin, R. et al.) 219-239 (Cambridge Univ. Press, 2009).

  • Schemske, DW, Mittelbach, GG, Cornell, HV, Sobel, JM & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annual Rev. Ecol. development system 40245-269 (2009).

    Google Scholar

  • MacArthur, RH Patterns of communities in the tropics. biol. J Linn society 119-30 (1969).

    Google Scholar

  • Hadfield, JD & Nakagawa, S. General quantitative genetic methods for comparative biology: phylogenies, taxonomies, and multi-trait models for continuous and categorical traits. J Evolution. biol. 23494-508 (2010).

    CAS Google Scholar

  • Cooney, CR et al. Sexual selection predicts the rate and direction of color divergence in a large avian radiation. nat. commune 101773 (2019).

    PubMed PubMed Headquarters Google Scholar

  • Cooney CR, MacGregor HEA, Seddon N & Tobias JA Multimodal signaling evolution in birds: reappraisal of a standard proxy for sexual selection. Proc. R. Soc. B 28520181557 (2018).

    PubMed PubMed Headquarters Google Scholar

  • van der Bijl, W. et al. Butterfly dichromatism evolved primarily on Darwin’s model, not Wallace’s. Development Latvian. 4545-555 (2020).

    PubMed PubMed Headquarters Google Scholar

  • Darwin, CR Human ancestry and sex selection (John Murray, 1871).

  • Tobias, JA, Montgomerie, R. & Lyon, BE The evolution of female ornament and weaponry: social selection, sexual selection, and ecological competition. Phil. Trans. R. Soc. B 3672274-2293 (2012).

    PubMed PubMed Headquarters Google Scholar

  • Galván, I., Negro, JJ, Rodríguez, A. & Carrascal, LM On showy midgets and sober giants: Body size as a constraint on avian plumage coloration development. Acta Ornithol. 4865-80 (2013).

    Google Scholar

  • Kiltie, RA Scaling of visual acuity with body size in mammals and birds. funct. Ecol. 14226-234 (2000).

    Google Scholar

  • Zahavi, A. & Zahavi, A. The handicap principle (Oxford Univ. Press, 1997).

  • Badyaev, AV & Hill, GE Avian sexual dichromatism in relation to phylogeny and ecology. Annual Rev. Ecol. development system 3427-49 (2003).

    Google Scholar

  • Simpson, RK, Johnson, MA & Murphy, TG Migration and the Evolution of Sexual Dichromatism: Evolutionary Loss of Female Coloration with Migration Among Warblers. Proc. R. Soc. B 28220150375 (2015).

    PubMed PubMed Headquarters Google Scholar

  • helperich, g Humboldt’s cosmos (Tantor eBooks, 2011).

  • Jetz, W., Thomas, GH, Joy, JB, Hartmann, K. & Mooers, AO The global diversity of birds in space and time. nature 491444-448 (2012).

    CAS PubMed PubMed CentralGoogle Scholar

  • Er, Y. et al. Segmentation of biological samples from photos to understand UV plumage evolution in passerines. form at bioRxiv https://doi.org/10.1101/2021.07.22.453339 (2021).

  • Chen LC, Zhu Y, Papandreou G, Schroff F & Adam H. Encoder-decoder with atrous separable convolution for semantic image segmentation. form at arXiv https://doi.org/10.48550/arXiv.1802.02611 (2018).

  • Hussein, BR, Malik, OA, Ong, W.-H. & Slik, JWF in Computational Science and Technology Lecture Notes in Electrical Engineering (eds. Alfred, R. et al.) 321–330 (Springer Singapore, 2020).

  • Troscianko, J. & Stevens, M. Image Calibration and Analysis Toolbox – a free software suite for objective measurement of reflectance, color, and pattern. Methods Ecol. development 61320-1331 (2015).

    PubMed PubMed Headquarters Google Scholar

  • Hijmans, RJ raster: Analysis and modeling of geographic data. R package version 3.5-15 https://CRAN.R-project.org/package=raster (2022).

  • Maia, R., Gruson, H., Endler, JA, White, TE & O’Hara, RB pavo 2: new tools for spectral and spatial analysis of color in R. Methods Ecol. development 101097-1107 (2019).

    Google Scholar

  • Stoddard, MC et al. Wild hummingbirds distinguish non-spectral colors. Proc. Natl. Acad. Science. United States of America 11715112-15122 (2020).

    CAS PubMed PubMed CentralGoogle Scholar

  • Gomez, D. & Théry, M. Simultaneous crypsis and showiness in color patterns: Comparative analysis of a Neotropical rainforest bird community. Am. nat. 169S42-S61 (2007).

    Google Scholar

  • Blonder, B. Do hypervolumes have holes? Am. nat. 187E93-E105 (2016).

    Google Scholar

  • Schliep, KP Phangorn: phylogenetic analysis at R. bioinformatics 27592-593 (2011).

    CAS Google Scholar

  • Fick, SE & Hijmans, RJ WorldClim 2: New climate surfaces with spatial resolution of 1 km for global land areas. international J. Klimat. 374302-4315 (2017).

    Google Scholar

  • Beckman, M. et al. glUV: a global UV-B radiation data set for macroecological studies. Methods Ecol. development 5372-383 (2014).

    Google Scholar

  • Laufen, SW et al. A continuous, satellite-derived measure of global terrestrial primary production. life sciences 54547-560 (2004).

    Google Scholar

  • Tobias, JA & Pigot, AL Integrating behavior and ecology into global strategies for biodiversity conservation. Phil. Trans. R. Soc. B 37420190012 (2019).

    PubMed PubMed Headquarters Google Scholar

  • Dunn, PO, Whittingham, LA & Pitcher, TE Mating systems, sperm competition, and the evolution of sexual dimorphism in birds. evolution 55161-175 (2001).

    CAS Google Scholar

  • Bivand, RS & Wong, DWS Comparison of implementations of global and local spatial association indicators. TEST 27716-748 (2018).

    Google Scholar

  • Hawkins, BA et al. Structural biases in aggregate species-level variables caused by repeated occurrence of species: a ubiquitous problem in community and assemblage data. J. Biogeogr. 441199-1211 (2017).

    Google Scholar

  • Hadfield, JD MCMC methods for generalized multi-response linear mixed models: the MCMCglmm R package. J.Stat. software 331-22 (2010).

    Google Scholar

  • Healy, K. et al. Ecology and lifestyle explain the variation in lifespan in birds and mammals. Proc. R. Soc. B 28120140298 (2014).

    PubMed PubMed Headquarters Google Scholar

  • R core team R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2021); https://www.R-project.org/

  • Share.

    Comments are closed.